A Java Implementation of a Kaypro II Microcomputer System

A CSI-426 Senior Project

Dr. Charles Howerton, Instructor

Presented By:

Joe Diethorn

Shannon Steinmetz

nternet address: www.yoy.org/kaypro, Email: kaypro@yoy.org

Team Members

- Team members
 - Brandon Buist
 - **♦** Joe Diethorn
 - **♦ Jim Gilmer**
 - **♦** Shannon Steinmetz
 - **♦ Hung To**
- Examined strengths of each member
- Tasks assigned according strengths
- All team members participated in design

Project Description

The Assignment

- Kaypro II emulator
 - **♦** Debugger
 - **♦** Printer emulation
 - Floppy drive emulation
 - **♦** Utilize CP/M operating system
 - **♦** Runs actual programs under emulated OS
- Implemented as a Java applet (needed to learn)
- Must implement good engineering processes
- Object oriented design and implementation

- Internet
 - **♦** News groups
 - **◆ Contacts**
 - **♦** Schematics
 - **◆ Data books**
- Obtained actual system
 - **♦ Kaypro manuals**
 - **♦ ROM images**
 - **♦ Floppy images**
 - **♦** Benefit of using actual system

Requirements Gathering

Hardware Emulation Description

- What is hardware emulation?
 - **♦ Simulate hardware components**
 - * CPU
 - ⋆ Floppy controller chip
 - ⋆ Memory mapping
 - ⋆ I/O chips
 - ⋆ Video circuitry
 - Benefits
 - **★ Would run actual software**
 - **★** Greater compatibility

Requirements Gathering

Hardware Emulation Challenges

- Needed to extract system ROM's
 - ◆ EPROM reader
 - Converted into static program tables
 - Emulation booted with actual boot ROM code
- Needed to extract floppy images
 - Obtained software that extracted raw disk images
 - Converted into static tables
 - Emulation reads and writes actual Kaypro disk data

Hardware Emulation Challenges Cont...

- Needed to decipher schematics
 - Used data books to define hardware interfaces
 - Used schematics to define system architecture
- Debugging emulation code
 - Needed to create system debugger

Documentation

- User manual
 - **♦** User instructions
 - **♦** Written before implementation
- Requirements definition
 - **♦** Contract with customer (instructor)
 - **♦** High level definition
- Requirements specification
 - **◆** Contract with programmer
 - **◆** Detailed definition
- Design
 - Previous documents describe what is needed
 - **◆** Design describes how to implement

- Test plan
 - **♦** What will be tested and how
- Accumulated information and data
 - **♦ ROM images**
 - **♦ CP/M disassembly**
 - **♦** Kaypro technical manual
- Beta test results
 - **♦** System disclosed to internet community
 - **♦** Since it was an Java applet, internet users could use
 - **◆** Comments were gathered

- Problems and inconstancies were "squeezed" out
- Team was united
- Many "heads" concentrated on complex issues
- Problems were found ahead of implementation
- Coordination between team members
- Incremental integration
- Shortened implementation cycle

- Advantages
 - **◆ Up-front documentation made** implementation easy
 - **◆ Integration was straight forward**
 - **♦** System "fell together"
 - **◆** System worked within one hour of integration
- Unit testing
 - **◆** Each member tested their own code before it was implemented
 - **◆ Documentation made it easy to unit test code**
 - **◆** Good unit testing resulted in successful integration and bug-free operation

Testing

- Executed test plan
- Ran actual programs
- Found actual Kaypro II bugs
 - **◆ Floppy drive selection bug**

Conclusion

- Benefits of properly engineered software
 - ◆ Properly engineered product yields seamless integration and compatibility and functionality
- Real world project
 - ◆ Far too many schools teach software engineering without exposing the student to a "real" project
 - **♦ The** focus is often on implementation not on the process

Conclusion Cont...

- The power is in the process
 - ◆ Schools need to understand it. Companies need to understand it. The power is in the process. A well-engineered product will last longer, exhibit fewer bugs, come together more smoothly, and result in an empowered, energized design and implementation team
- Our team
 - **♦ The result is total buy-in and total team kmowledge**
 - **♦ Team** was excited and empowered
 - ◆ The software reflects the team that designed and implemented it