

__
presentation.doc

1

Document Nbr: CSI426/kaypro-PD01.02
Date: Oct 8, 1999
Copy Nbr: ____

A JAVA IMPLEMENTATION
OF A KAYPRO II
MICROCOMPUTER SYSTEM

A PROJECT FOR COMPUTER
SCIENCE 426 (CSI426)

METROPOLITON STATE COLLEGE,
DENVER, COLORADO

• Brandon Buist
• Joe Diethorn
• Jim Gilmer
• Shannon Steinmetz
• Hung To

__
presentation.doc

2

1. Abstract

1.1 The Class
CSI 426 was the second class in series of senior project classes. The series is a practical
synthesis of all courses taken at Metro State. The course was presented in a “real life”
context. In many ways, CSI 426 was an independent study. The classroom experience
was comprised of brainstorming sessions, and discussion of independent issues.

1.2 Assignment
The task assigned was to produce an emulation of an older computer system. The class
was given a list of computers to emulate. Among the list was the Kaypro II. The
assignment was to completely emulate the computer system. The programming language
was Java. The emulation was to be delivered over the Internet within a conventional
browser. Most of the students had little or no experience in Java. They were asked to
come up to speed in Java over the summer (it was a fall class). There was no instruction
in Java. That was left up to the student.

The emulation was to be completed in a single semester. The group was to use good
design practices. This included full documentation. Documentation deliverables were:
• User manual
• Requirements documentation
• Design documentation
• Test documentation

The project was to be implemented as designed. Periodic requirement and design
reviews were held. Due dates were assigned for each document. The final deliverable
was to be a working demonstration of the assigned computer.

1.3 Groups
The class was divided up into groups of five. Our group was diverse, in that it was made
of individuals of varied skills and backgrounds. It was up to the group to organize itself.

1.4 The Kaypro II
The Kaypro II was one of the first luggable computers. It was also one of the first
computer “clones.” The computer was self contained, and included a screen, keyboard,
storage devices, CPU and peripherals.

1.5 Group Activity
It was up individual groups to research their assigned machine. Our group utilized the
Internet to gather most of the information. We obtained complete schematic diagrams,
and made some very valuable contacts.

__
presentation.doc

3

Although we never formally organized ourselves, our group members ended up being
organized into the following areas:
• Project manager
• Technical lead
• Spokesman
• Maintenance programmer
• GUI programmer

1.6 Accomplishments

The project was delivered within the given timeframe. All class objectives were met.
The emulation literally “fell together.” The project proved that proper software design
techniques really do pay off. The class was extremely difficult, and the project was very
ambitious. It pushed many team members to their limit.

The real payoff was at the end of the project. After the final presentation the group met
at a nearby restaurant. They closed the restaurant down. The conversation spilled into
the parking lot. As it turns out the synergy of the group was such that nobody wanted to
let go of the moment. Perhaps the greatest lesson learned was that of teambuilding.

__
presentation.doc

4

2. Simplified Project Requirements (Specific)
The assignment was to produce a working emulation of a Kaypro II computer. The
Kaypro II was designed in the 1970’s. It was one of the first computer systems to be self-
contained. This put great demands on the design team. Every inch of the computer
needed to be researched, documented, and implemented in emulation.

The essence of the assignment was the decomposition and recomposition of a computer
system. The Kaypro II was reproduced so faithfully that even the original font,
characters and green screen were duplicated. To produce such an accurate emulation, it
was necessary to examine and duplicate the entire Kaypro II architecture at a hardware
level.

The Kaypro II contains internal software. This software is located on internal ROMs. To
emulate the Kaypro II from a hardware level, it was necessary to extract data from the
Kaypro II’s ROM chips. To do this, the ROM chips were extracted from a working
Kaypro II computer and read with an EPROM reader. The binary data from the EPROM
reader was converted into static tables and inserted directly into the emulator software.
The result is that the emulator runs the actual Kaypro II internal ROM code. The same
was true of the floppy disks. Because the Kaypro II reads boot data from it’s internal
ROM and floppy disks, it was necessary to extract binary images from floppy disks. This
meant reading individual tracks and sectors from actual Kaypro II diskettes. To do this,
the group located software (via the Internet) that allowed Kaypro II diskettes to be read
via a PC. Unfortunately, modern disk drives were incompatible with this software. The
group obtained an old 486 computer with a 360K-diskette drive. The Kaypro II diskette
images were extracted, converted into static tables and inserted directly into the
emulation software. The tables were used by the floppy disk controller emulation
routines.

Integrated circuits were analyzed and reproduced in hardware. System RAM and ROM
were reproduced down to clock cycle reads and writes. The group was fortunate to obtain
schematic diagrams of the Kaypro II computer system. The entire architecture was
analyzed down to the chip level. Data books for individual chips were obtained. Each
major chip was analyzed and emulated in software. In addition, discrete circuitry was
analyzed and simulated. For example: the Kaypro II screen is a bank-switched, memory
mapped architecture. The Kaypro II keyboard shares the system serial port, and the
characters that are displayed are generated via discrete circuitry (as opposed to modern
character generator chips, etc). This discrete circuitry was analyzed and duplicated in
software.

All major portions of Kaypro II hardware were emulated in software. A sampling of
Kaypro II applications were extracted byte-by-byte from native media. This software
was transferred to the Kaypro II emulation. The software that runs on the emulator runs
without modification. The software “thinks” that it is running on an actual Kaypro II.
This means that the emulation is capable of running a greater base of software.

__
presentation.doc

5

2.1 Functional Requirements

• The emulation program shall emulate the Kaypro II model of the Kaypro product line
• The user shall view the emulated version just as they would the original
• The emulator shall support the same character set as the original. Limitations in

keyboard may apply. It is acceptable to substitute functionality when necessary.

2.2 Technical Requirements

• The emulated RAM shall be 64K bytes
• The emulated ROM shall be 12K Bytes
• The emulated video RAM shall be 4K bytes
• The emulator shall support 2 virtual floppy disk drives
• The emulator shall support an 80 character per line by 24-line text screen with

graphic extensions.

2.3 Platform Requirements

• The Kaypro II emulation shall be implemented in Java.
• The Implementation shall be pure Java (e.g. no Microsoft extensions)
• The Kaypro II emulation shall be implemented as an applet.
• The Kaypro II emulation shall be made available via the World Wide Web.

2.4 Emulation Requirements

• Emulation shall be at the hardware level
• BIOS ROM shall be extracted from the original Kaypro II and inserted into the

emulated version as executable code.

__
presentation.doc

6

2.5 Peripheral Requirements

• Parallel printer output shall be supported
• Screen output shall resemble the original Kaypro II as closely as possible
• Keyboard input shall be supported. Keyboard input shall resemble the original

Kaypro II as closely as possible
• The emulator shall support the emulation of the Z-80 processor
• The Kaypro II emulator shall not support serial port operation

2.6 Operating System Requirements

• CP/M 2.2 shall be supported
• The emulator shall support loading of the OS from floppy drive A
• The CP/M operating system shall actually be run at the software level via an obtained

copy of the CP/M operating system

2.7 Port Requirements

• Parallel support shall be supported
• Serial ports used for keyboard control shall be supported
• Disk drive ports shall be supported

2.8 Bank selection

• The emulator shall support banking
• The emulator shall support memory-mapped video

2.9 Interface Requirements

• Keyboard input shall be made directly into the Java page. The user shall be able to
type directly into the emulated Kaypro II.

2.10 Debug

• The developer shall be able to select (or deselect) a debug mode

__
presentation.doc

7

3. Working The Assignment

3.1 Group involvement
Because the group was diverse, it became necessary to partition the project into pieces
appropriate for each team member. Some team members had not come up to speed in
Java. Others were highly aggressive, others were passive.

The team divided itself in such a way that each member utilized their own particular
strength. Although each team member concentrated on their strength point, all were
involved in each design decision. Decisions were not made in ignorance. Before some
issues could be decided upon, the problem needed to be understood. Many a late-night
was spent “schooling” each other in different parts of the system.

3.2 Important Decisions
The group needed to decide how to attack the problem. Two methods were possible:
1) Organize around a central technical leader. This person would do most of the work.

The rest of the group would provide support for this single individual. The advantage
was a potentially quick development cycle. The disadvantage was that the overall
group learning would be minimized.

2) Organize the group into “specialists.” Each specialist would take one piece of the
project. A piece could be technical, such as a CPU implementation, or it could be
operational, such as a presenter or information gatherer. The advantage was a greater
learning potential; while the disadvantage was a higher risk that one individual would
not come through with their piece of the project.

The decision was made to go with option 2, mostly because of the learning potential. As
it turns out option 2 was a winner for more than just learning.

By organizing into “specialists” the team was forced to depend on each other.
Interdependence forced adherence to a formalized design methodology. The group
learned that a well-documented project meant less confusion, and a more cohesive group.
By relying on each other the group gained synergy. Group synergy has immeasurable
benefits. Much of the benefits manifest themselves in work ethic. Team members don’t
want to let each other down. They are driven by the motivation of themselves and the
team. When one is down, the others filled in the slack.

What is interesting is that this same situation applies to the computing industry. The
team synergy is sometimes overlooked. At times documentation is seen as unnecessary,
or wasteful. In fact, documentation is a form of communication between internal and
external group members. Many corporations view such documentation as wasteful only
because they fail to see the true purpose of the process. The same is true for many of
today’s programmers.

__
presentation.doc

8

The CSI 426 project was an invaluable demonstration of a well-communicated process.
The results were tangible. The evidence was a well-orchestrated project, and most
importantly: working, well thought out, reliable software.

3.3 Research
The first step was researching the assigned computer. That involved searching the
Internet for tidbits of information. Along the way, we made some really useful contacts.
One source provided us with complete documentation and schematics. Still others helped
bring the group up to speed on the operating system (CP/M). These same people were
involved in testing the preliminary and finished product (see Software Beta Feedback,
below).

3.4 Documentation
The documentation for this project was enormous. It filled three 3” binders.

The group didn’t write documentation just to fill-up binders, however. The goal was
effective communication. Every shred of information obtained was committed to paper.
The result was a rather aggressive documentation set.

One benchmark of good documentation is how often it is used, and how often one finds
the answer they are looking for. As the project progressed, the documentation set became
the bible. Diligent updating of the documentation became imperative. 80%+ of the
questions asked by individuals could typically be found in the documentation.

The software produced was actually derived from the documentation. It would have been
possible to simply write the software and back-fill the requirements (a practice that all-to-
often is exercised in industry). Instead, the group used this documentation to enhance
their internal and external communication.

The real payoff came at implementation. The group had met weekly to create the design
documents. Once all research was complete, the implementation was easy. The group
decided to skip the next meeting and concentrate on writing code. The implementation
was modeled from the documentation.

As it turned out, the documentation was very much like an instruction manual. Every
programmatic function was described in the design document. The expected inputs,
outputs and function were spelled out. Most ambiguities were ironed out long before
implementation.

3.5 Implementation
The two weeks spent implementing was extremely productive. In the two weeks that the
team did not meet, each member produced code as per the design. In addition, each unit
tested their part of the project. The result was individual program modules that worked
independently. The question was how they would work together.

__
presentation.doc

9

Two weeks later the team met to join all the pieces. An intermediate system had been
constructed via constant email communication. The latest pieces were brought together
and a beta system built in less than two hours.

An amazing thing happened. Much to the surprise of the team, the system ran the first
time! There were a few issues that were discovered while testing the integrated system,
but those were minimal. Most dealt with performance and usability issues.

The team worked together to resolve the usability and performance issues. In the end, the
team found time to enhance the original target product. When the system was presented,
it ran flawlessly. Performance met or exceeded the original Kaypro II.

3.6 Interesting notes
The finished project ran so well, and was tested so rigorously that only a small number of
bugs were discovered. After troubleshooting these problems it was discovered that the
problems were actually in the original Kaypro II software.

Upon running the finished project a number of features were “discovered” in the
emulation. Upon further inspection, it was found that these features resided in the
original hardware as well.

The pride of a job well done was evident in the preparation of the final presentation. A
problem was encountered divvying up the presentation. The issue was that each person
wanted to present too much. Each person wanted to “be in the spotlight” with the project.
When the project was presented, the entire team was closely bunched around the
computer. I guess everyone wants to be associated with a winner.

3.7 Thanks
Special thanks to Dr. Howerton for running this class. He provided an atmosphere that
closely mimicked real-life. The project was extremely difficult, yet one of the most
rewarding. He will be missed at MSCD.

__
presentation.doc

10

4. Software Beta Feedback
Perhaps one of the best ways to test a product is to solicit real-life users. That’s what our
group did. Many of the contacts made were via the CP/M users group (on the Internet).

We decided to publish a beta version of the project on the Internet. We created a web
site, and published the URL to the CP/M users group. To our surprise, we received quite
a bit of feedback. Typical comments are shown below.

…..

“Excellent job! I've been putting off upgrading to IE4.0 at home, but after
playing with your emulator in some free time here at work, I think I just
found a reason to upgrade! (However, I find it ironic that I need to upgrade
to the latest technology in browsers to emulate something as old as my
Kaypro II! <g>)

I own a Kaypro II and a Kaypro 4, but I haven't dug them out in years. From
what I remember, your emulator is practically identical. Well done!!”

…..

…..
“I saw a message on comp.os.cpm describing your Kaypro II emulator (on-line
yet!) and I have to say I am flabbergasted. (Talk about retrocomputing). I
have two Kaypro II's (but upgraded to DSDD drives) and two Kaypro 10's (one
the with original 10 mB drive, the other with a 20 mB drive) and really love
the machines. Glad to see that someone else finds them of interest.
Anyway, I played a game of Hunt the Wumpus on-line, and it was just like the
real thing -- I am definitely impressed. Assuming this is, as I understand,
a class project, I hope you all get A's, because it really is a fine piece
of work.”

…..

….
“I'm speechless. (More to the point, I hope my wife doesn't find this
site. If she does, she'll want me to get rid of my Kaypro's, since from
her point of view there's no reason why I can't play with an on-line
emulated version as easily as a real one!)”

….

__
presentation.doc

11

5. Online Access
Currently the Kaypro II emulation is located at: www.yoy.org/kaypro. The email
address is: kaypro@yoy.org. Because Java is an emerging standard, the emulation works
on only a narrow band of browsers. See the web site for details. Complete
documentation and user guides are located in PDF format on the web site as well.

Plans to incorporate the Kaypro II emulator, and others, on the MSCD web site are in the
works. Please contact the MSCD computer science department for further information.

The group is currently entertaining the idea of releasing the source code to the public
domain. Comments or suggestions are greatly appreciated (use the email address above).

